Name: \qquad
Section: \qquad
Review of:
Prime \& Composite Numbers, Exponents, Order of Operations, \& Divisibility Rules

1) What is a prime number?
2) What is a composite number?
3) Is 33 prime or composite? How do you know?
4) Is 17 prime or composite? How do you know?
5) In 9^{7}, the 9 is called the \qquad .
6) In 9^{7}, the 7 is called the \qquad .
7) In 97 , the whole problem is called a \qquad .
8) Evaluate the following without a calculator. Show your work.
a) $\quad 2^{4}$
b) 7^{2}
c) 3^{3}
9) Evaluate the following without a calculator. Show your work.
a) $10+6(2)$
b) $(15+39) \div 6$
c) $2(20-15)+1$
d) $60 \div(7+3)+3^{2}$
e) $7(12+8)-6$
f) $10+6(5)-7$
g) $\left(4^{2}+6\right) \div 11$
h) $2(4)+8-5(3)$
i) $5+18 \div 3^{2}-1$
j) $[8+5(10)]-12$
k) $14+3(50-72)$
10) Decide if the following numbers are divisible by the possible factors or not without using a calculator. Mark the box(es). The first one is done for you as an example.

	Divisible by 2	Divisible by 3	Divisible by 4	Divisible by 5	Divisible by 6	Divisible by 9	Divisible by 10
936	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	
250							
79191							
93,295							
461,959							
47,320							
$1,536,824$							
$1,459,628,360$							

